If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.3x^2+36x-1040=0
a = -0.3; b = 36; c = -1040;
Δ = b2-4ac
Δ = 362-4·(-0.3)·(-1040)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{3}}{2*-0.3}=\frac{-36-4\sqrt{3}}{-0.6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{3}}{2*-0.3}=\frac{-36+4\sqrt{3}}{-0.6} $
| -0.3x^+36x-1040=0 | | y-1.02=4.7 | | X^2=-x^2+18x | | (2m-16)=1/3(2m+4) | | 0.6+0.08n=32 | | 3X^2-60x-80=0 | | 06+0.08n=32 | | 52/x=-4/41 | | (-3+x)(x+1)(x-1)=0 | | c/0+25=27 | | 4.1(m+3)m=1.5 | | 3-4x÷5=7 | | 2x(x+4)=90 | | 45=x–20;x= | | Y=-0.5^2+5x-8 | | (2x-10)=(4x+5) | | 15x-5=7x+4 | | -4=3h-7 | | 5y−9=5y−9=26 | | 3975+6x=995+17.95 | | 15x+75=1575 | | 9(-3a)= | | 12x+23+20=103 | | 15-4h=-1 | | -5x+23=175 | | 2-4r=14 | | F=3.43+0.03k | | G(x)=400(.70) | | -4c+10=18 | | v+4.3=7.05 | | (3x+10)(6x-28)+36=180 | | -10+40x=2400 |